Name www.PapaCambridge.com ## CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education ## PHYSICAL SCIENCE 0652/02 Paper 2 May/June 2003 1 hour Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. ## Answer all questions. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 12. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | 11 | | | Total | | For Examiner's Use 1 An isotope of silicon has the atomic notation $^{29}_{14}\mathrm{Si}$. Use this information to complete the table in Fig. 1.1. | number of protons in nucleus of atom | 14 | |--|----| | number of neutrons in nucleus of atom | | | total number of electrons around nucleus | | | arrangement of these electrons in shells | | Fig. 1.1 [3] Fig. 2.1 shows an electromagnetic relay switch. 2 Fig. 2.1 | a) | (i) | Explain why the contacts close when switch S is closed. | | |-----|------|---|------| | | | | | | | | | | | | | | | | | (ii) | | رد]. | | | . , | | | | | | | .[2] | | (b) | | lamp in the circuit has a current of 4 A through it when there is a potential differer 2 V across it. | тсе | | | | culate the resistance of the lamp. Show your working and state the unit stance. | of | resistance = [3] www.PapaCambridge.com 3 (a) (i) Draw a 'dot-cross' diagram to describe the bonding in a molecule of methan You need show only the outer electrons of each atom. | | | | [2] | |-----|------|---|-----| | | (ii) | Name the type of bonding between the atoms in the methane molecule. | | | | | | [1] | | (b) | | e molecule of an alcohol consists of one carbon atom, four hydrogen atoms and or
gen atom. | ne | | | (i) | Write the structural formula of this compound. | | | | | | [2] | | | (ii) | Calculate the relative molecular mass, M_r , of this compound. | | (a) Fig. 4.1 shows parallel light entering a converging lens. Fig. 4.1 - (i) Complete the diagram to show the paths of the rays of light after passing through the lens. - (ii) Mark the focal length of the lens on the diagram. [3] **(b)** Fig. 4.2 shows a ray of light striking a mirror. Fig. 4.2 - (i) Mark the angle of incidence at the mirror and label it i. - (ii) Complete the path of the ray of light after it strikes the mirror. [2] | 5 | (a) | In an experiment using Group VII elements, a student adds bromine wait | |---|-----|--| | | | colourless solution of potassium iodide. The solution changes to an orange-b colour. | | | | In terms of the bromine reacting with the jodide ion, state the reason for this change | | Many Many | | |---|-------| | 6 For Examin | | | In an experiment using Group VII elements, a student adds bromine was colourless solution of potassium iodide. The solution changes to an orange—b colour. In terms of the bromine reacting with the iodide ion, state the reason for this change of | | | In terms of the bromine reacting with the iodide ion, state the reason for this change of colour. | e.com | | | | | [2] | | **(b)** Complete the table in Fig. 5.1 about ethane and ethene. | | ethane | ethene | |---|--------|--------| | diagram for structure of molecule | | | | effect of hydrocarbon
on bromine water | | | Fig. 5.1 (a) Fig. 6.1 shows a liquid-in-glass thermometer. 6 Fig. 6.1 | | | (i) | Name a suitable liquid to use in the thermometer. | | |---|-----|-------|---|-----| | | | (ii) | State the reading on the thermometer °C | | | | (| (iii) | Explain why a narrow capillary tube is used. | | | | | | | | | | (b) | The | thermometer bulb is put in melting ice. | | | | | (i) | Explain why the liquid moves in the capillary tube. | | | | | | | ••• | | | | | | | | | | (ii) | | 3] | | 7 | (a) | | the kinetic particle theory of matter to explain why energy is needed to melt a solid
s melting point, to form a liquid. | | | | | | | | | | | | [2 | | | | (b) | A st | udent puts a drop of coloured ink into water. The ink slowly spreads throughout ther. | е | | | | Use | the kinetic particle theory of matter to explain this observation. | | | | | | | | | | | | | •• | | | | | [| 2] | 8 (a) Fig. 8.1 shows water waves going from deep water into shallow water. The arrow the direction of the waves in the deep water. Fig. 8.1 (a) (i) Name the process illustrated. Draw an arrow to show the direction of the waves in the shallow water. [2] (b) When the waves enter the shallow water, state what happens to their speed, (i) their frequency, (ii) their wavelength.[3] (iii) A student is asked to prepare the salt calcium chloride from powdered limestone, www.papaCambridge.com carbonate. (a) Name the acid she must use.[1] (b) She adds powdered limestone gradually to the acid in a beaker, stirring frequently. A gas is produced. (i) Name the gas produced in this reaction.[1] (ii) Describe a test to identify the gas produced in this reaction. test result [2] **(c)** She continues to add powdered limestone until no further reaction occurs. Describe how to obtain solid calcium chloride from the mixture in the beaker. 10 Fig. 10.1 shows two examples of a boy applying a force to an object. The boy holds a box in a steady position. The boy pushes the box along the bench. Fig. 10.1 | (a) | State and explain in which example the boy is doing useful work on the box. | |-----|---| | | | | | | | | [2] | | (b) | The box has a mass of 1.8 kg. | | | Calculate the weight of the box. ($g = 10 \text{ N/kg}$) | | | | | | | | | aiaht [0] | | | weight = [2] | | (c) | In example 1, the boy drops the box. | | | Describe the motion of the box as it falls to the ground. | | | | | | [2] | - Most fuels are chemicals which burn in air. - www.PapaCambridge.com (a) Hydrogen burns in air to form water vapour. Use this example to explain the meaning of oxidation. **(b)** In terms of energy, state why hydrogen is useful as a fuel.[1] (c) Explain why hydrogen is described as a *clean* fuel. | DATA SHEET The Periodic Table of the Elements | |--| |--| | | | | | | | = | | alc I ab | e or the | THE PERIODIC LABIE OF THE ETERNIS | 2 | | | | | | | | |-------------|-----------------|--------------------------|-----------------|----------------|--------------------|------------------|------------------|----------------|-----------------|-----------------------------------|---------------|------------------|-----------------|----------------|-----------------|-----------------|----------------|--| | | | | | | | | | Grc | Group | | | | | | | | | | | | = | | | | | | | | | | | ≡ | 2 | > | > | | 0 | | | | | | | | | | - | | | | | | | | | | 4 | H | | | | | | | | | | 1 | | | | | | | | | | 2 | | | | 6 | | | | | • | | | | | | 1 | 12 | 14 | 16 | 19 | 20 | | | | Be | | | | | | | | | | | Ф | ပ | z | 0 | ш | Ne | | | Lithium | Beryllium
4 | | | | | | | | | | | Boron
5 | Carbon
6 | Nitrogen
7 | Oxygen
8 | Fluorine
9 | Neon
10 | | | 23 | 24 | | | | | | | | | | | 27 | | | 32 | | 40 | | | Na | M | | | | | | | | | | | Αl | Si | Δ. | S | 75 | Ā | | | | Magnesium
12 | F | | | | | | | | | | Aluminium
13 | 4 | suns | Sulphur
16 | 1 | Argon
18 | | | 39 | 40 | 45 | 48 | 51 | 52 | 55 | 56 | 29 | 29 | 49 | | 70 | | | 62 | 80 | 84 | | | × | Ca | Sc | F | > | ပ် | Mn | Бe | ပိ | Z | ာ | Zu | Ga | ge | As | Se | Ā | 궃 | | | Potassium 9 | Calcium
20 | Scandium
21 | Titanium
22 | Vanadium
23 | Chromium
24 | Manganese
25 | Iron
26 | Cobalt
27 | Nickel
28 | Copper
29 | Zinc
30 | Gallium
31 | Germanium
32 | | Selenium
34 | Bromine
35 | Krypton
36 | | | 85 | 88 | 88 | 91 | 93 | 96 | | 101 | 103 | 106 | 108 | 112 | 115 | 119 | | 128 | 127 | 131 | | | Rb | งั | > | Z | g | Mo | ဥ | Bu | Rh | Pd | Ag | В
С | In | Sn | Sb | <u>e</u> | Ι | Xe | | | Rubidium | Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium
43 | Ruthenium
44 | Rhodium
45 | Palladium
46 | Silver
47 | Cadmium
48 | Indium
49 | Tin
50 | Antimony
51 | Tellurium
52 | lodine
53 | Xenon
54 | | | 133 | 137 | 139 | 178 | 181 | 184 | 186 | 190 | 192 | 195 | 197 | 201 | 204 | 207 | 509 | | | | | | Cs | Ва | Га | Ξ | Та | > | Be | SO. | ľ | 풉 | Ρn | Hg | 11 | Pb | Ξ | S | Ą | R | | | Caesium | Barium
56 | Lanthanum
57 * | Hafnium
72 | Tantalum
73 | Tungsten
74 | Rhenium
75 | Osmium
76 | Iridium
77 | Platinum
78 | Gold
79 | Mercury
80 | Thallium
81 | Lead
82 | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | | | 226 | 227 | | | | | | | | | | | | | | | | | | Francium | Radium
88 | AC
Actinium
89 † | | | | | | | | | | | | | | | | | | | Jushan | 8-71 Lanthanoid series | 1 | 140 | 141 | 144 | | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169 | 173 | 175 | | | A 50 | ctinoic | 30-103 Actinoid series | | ဝီ | ቯ | | Pm | | En | gg | Q
L | D | 우 | ш | Ę | Υp | Γn | | | | | | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | Samarium
62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | Holmium
67 | Erbium
68 | | Ytterbium
70 | Lutetium
71 | | | | | a = relative atomic mass | nic mass | | | 0 | | | | | | | | | | | | | | 4 | W. A. | Cambridge.com | |--------------------------------------|-----------------------------------|---| | 175
Lu
Lutetium
71 | Law | Camb. | | Yb
Ytterbium
70 | No
Nobelium
102 | Tage Co. | | 169 Tm Thulium 69 | Md
Mendelevium
101 | 13 | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | 165
Ho
Holmium
67 | ES
Einsteinium
99 | (r.t.p.). | | 162 Dy Dysprosium 66 | Californium
98 | pressure | | 159 Tb Terbium 65 | Bk
Berkelium
97 | ature and | | 157
Gd
Gadolinium
64 | Cm
Curium
96 | m temper: | | 152
Eu
Europium
63 | Am
Americium
95 | 24 dm³ at room temperature and pressure (r.t.p.). | | Samarium 62 | Pu Plutonium 94 | is is 24 dr | | Pm Promethium 61 | Neptunium
93 | of any ge | | Neodymium 60 | 238
U
Uranium
92 | one mole | | 141 Pr Praseodymium 59 | Pa Protactinium 91 | The volume of one mole of any gas is | | 140 Ce Cerium 58 | 232
Th
Thorium
90 | The « | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). b = proton (atomic) number a = relative atomic massX = atomic symbol в **X** Ş